MMCC MASTHEAD
Mid-Michigan Computer Consultants - Bay City, Michigan
 


CONTENTS       (old style)
Mid-Michigan Computer Consultants
509 Center
Bay City, Michigan

Sales (989) 892-9242
Support (989) 686-8860

Plb-0100.cfm v1.0


plb-t010.cfm
 

ANSI Standard PL/B Language and Visual PL/B

NOTE TO OUR READERS
This web resource is written for our own use. But we feel strongly that the PL/B language should be shared with the software community. So feel free to use this at will! BUT PLEASE... if you find errors or omissions or have a better way to do something. TELL US! Dialog helps us all. Send e-mail to: support@mmcctech.com

An article by John Walker, founder of Autodesk, Inc. and co-author of AutoCAD.
Found at Fourmilab Switzerland.
Specific article link: http://www.fourmilab.ch/webtools/base64/rfc1341.html

Network Working Group
Request for Comments: 1341
N. Borenstein, Bellcore
N. Freed, Innosoft
June 1992

Archived at MMCC 6/20/2003

The following excerpt from RFC 1341 defines Base64 encoding.

5.2 Base64 Content-Transfer-Encoding

The Base64 Content-Transfer-Encoding is designed to represent arbitrary sequences of octets in a form that is not humanly readable. The encoding and decoding algorithms are simple, but the encoded data are consistently only about 33 percent larger than the unencoded data. This encoding is based on the one used in Privacy Enhanced Mail applications, as defined in RFC 1113. The base64 encoding is adapted from RFC 1113, with one change: base64 eliminates the "*" mechanism for embedded clear text.

A 65-character subset of US-ASCII is used, enabling 6 bits to be represented per printable character. (The extra 65th character, "=", is used to signify a special processing function.)

NOTE: This subset has the important property that it is represented identically in all versions of ISO 646, including US ASCII, and all characters in the subset are also represented identically in all versions of EBCDIC. Other popular encodings, such as the encoding used by the UUENCODE utility and the base85 encoding specified as part of Level 2 PostScript, do not share these properties, and thus do not fulfill the portability requirements a binary transport encoding for mail must meet.

The encoding process represents 24-bit groups of input bits as output strings of 4 encoded characters. Proceeding from left to right, a 24-bit input group is formed by concatenating 3 8-bit input groups. These 24 bits are then treated as 4 concatenated 6-bit groups, each of which is translated into a single digit in the base64 alphabet. When encoding a bit stream via the base64 encoding, the bit stream must be presumed to be ordered with the most- significant-bit first. That is, the first bit in the stream will be the high-order bit in the first byte, and the eighth bit will be the low-order bit in the first byte, and so on.

Each 6-bit group is used as an index into an array of 64 printable characters. The character referenced by the index is placed in the output string. These characters, identified in Table 1, below, are selected so as to be universally representable, and the set excludes characters with particular significance to SMTP (e.g., ".", "CR", "LF") and to the encapsulation boundaries defined in this document (e.g., "-").

Table 1: The Base64 Alphabet
Value Encoding Value Encoding Value Encoding Value Encoding
0 A 17 R 34 i 51 z
1 B 18 S 35 j 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 l 54 2
4 E 21 V 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 o 57 5
7 H 24 Y 41 p 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 s 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 O 31 f 48 w (pad) =
15 P 32 g 49 x
16 Q 33 h 50 y

The output stream (encoded bytes) must be represented in lines of no more than 76 characters each. All line breaks or other characters not found in Table 1 must be ignored by decoding software. In base64 data, characters other than those in Table 1, line breaks, and other white space probably indicate a transmission error, about which a warning message or even a message rejection might be appropriate under some circumstances.

Special processing is performed if fewer than 24 bits are available at the end of the data being encoded. A full encoding quantum is always completed at the end of a body. When fewer than 24 input bits are available in an input group, zero bits are added (on the right) to form an integral number of 6-bit groups. Output character positions which are not required to represent actual input data are set to the character "=". Since all base64 input is an integral number of octets, only the following cases can arise: (1) the final quantum of encoding input is an integral multiple of 24 bits; here, the final unit of encoded output will be an integral multiple of 4 characters with no "=" padding, (2) the final quantum of encoding input is exactly 8 bits; here, the final unit of encoded output will be two characters followed by two "=" padding characters, or (3) the final quantum of encoding input is exactly 16 bits; here, the final unit of encoded output will be three characters followed by one "=" padding character.

Care must be taken to use the proper octets for line breaks if base64 encoding is applied directly to text material that has not been converted to canonical form. In particular, text line breaks should be converted into CRLF sequences prior to base64 encoding. The important thing to note is that this may be done directly by the encoder rather than in a prior canonicalization step in some implementations.

NOTE: There is no need to worry about quoting apparent encapsulation boundaries within base64-encoded parts of multipart entities because no hyphen characters are used in the base64 encoding.

Link to http://www.fourmilab.ch/webtools/base64/ tools page with a unix download.

 




v1.10

Write to MMCC Technical Support at:               Send e-mail to MMCC.
MMCC - Technical Support
600 W. Midland
Bay City, MI 48708
(989) 686-8860
© 1997 - 2017 MMCC - All Rights Reserved